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The partial-wave equation 

da/dti= | [l/2ik] £ (2/+l)(l-a*)iMcosi 

has been used to fit most of the recent ir-\-p differential cross-section measurements above 1 GeV/c. The 
ai were determined by the method of weighted least squares, with the further requirement that they be real 
and they satisfy either constraints of the form 1>1 — ai>0 (which allows the scattering to be interpreted 
as purely absorptive) or the more relaxed constraints 2 > 1 — ai>0. This equation with the requirements 
does not allow the scattering amplitude to have a spin-flip part or a real part, but for one set of data further 
terms were added to allow these additional parts of the scattering amplitude. For each differential cross 
section at the various energies, a set of ai values was determined which in almost all cases fit the measured 
cross sections quite well. These sets of ai parameters have two properties in common. First, all ai except #o 
satisfy 1 > 1—ai>0. The a0 parameters (s-wave amplitudes) required 1—a0> 1 except for the higher energies 
where 1 > 1 — ao>0 was obtained. Second, graphs oil —at versus / (one graph for each different cross-section 
measurement) show that l~ai decreases rather smoothly with increasing / and that the curve is either 
roughly linear or concave upward. No striking variations in the ai parameters are observed when the energy 
is close to one of the ir+p total cross section resonances. The ai parameters are interpreted using 1—ai as a 
measure of the absorption of the /th partial wave by inelastic processes. Differential cross section measure
ments of ir~-\-p at 2.01 GeV/c and of ir+-\-p at 2.02 GeV/c, previously published only in graphical form, are 
given in the Appendix. 

I. INTRODUCTION 

IN the last few years a large amount of data on 
elementary particle elastic scattering above 1 GeV/c 

has been produced.1 Most of it has been analyzed from 
the standpoint of the simpler form of the Regge theory 
of elastic scattering in which the data were to be fitted 
with only a few parameters, some of these parameters 
having physical significance.2,3 The hope that such a 
simple theory would be satisfactory has not been ful
filled. More parameters were required than were first 
thought necessary,4-7 and the theory was found to be 
much more complex than first supposed. Therefore, it 
is desirable to look at these recent data from some other 
theoretical viewpoint. Ideally one would like a theory of 
elastic scattering derived from a general form of quan
tum field theory or 5-matrix theory, this theory at the 
same time containing only a few parameters to be de
termined by experiment. It would be even more satis
factory if at some level the theory, or its parameters, 
had direct physical significance or gave some physical 
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insight. No such theory exists and, therefore, we have 
turned back to some older concepts which while not 
directly related to any profound theory at least provide 
a way of fitting the data so that the values of parameters 
provide physical insight. These concepts are the partial-
wave analysis of scattering theory combined with the 
assumption that at high incident momenta, most of the 
elastic scattering is absorptive. 

We have analyzed the ir+p elastic scattering above 1 
GeV/c using empirical partial-wave amplitudes with 
two purposes in mind. First, looking upon this analysis 
as a generalization of the optical model, we wished to 
discover how well a generalized optical model could fit 
not only the diffraction peak part of the elastic scat
tering, but also the entire differential cross section. 

Secondly, the resonances recently discovered above 1 
GeV/c in T+p total cross sections are sometimes related 
to a particular angular momentum state, whose identity 
is sought by studying the elastic differential cross 
section at the resonance energies. Thus, the large peak in 
the back hemisphere in ir++p elastic scattering at 1.5 
GeV/c has been related by both Cook et al.s and 
Helland9 to the w-\-p total cross-section maximum at 
1.4 GeV/c; and the second peak in the ir~+p differential 
cross section at 2.02 GeV/c has been related by Damouth 
et al.10 to the 2.1 GeV/c T~+p total cross-section maxi
mum. However, Simmons11 has shown that this second 

8 V. Cook, B. Cork, W. R. Holly, and M. L. Perl, Phys. Rev. 
130, 762 (1963). 

9 J. A. Helland, University of California Radiation Laboratory 
Report No. UCRL-10378, 1962 (unpublished). 

10 D. E. Damouth, L. W. Jones, and M. L. Perl, Phys. Rev. 
Letters 11, 287 (1963). 

11L. M. Simmons, Phys. Rev. Letters 12, 229 (1964). 
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peak in ir~-\-p differential cross section at 2.07 GeV/c 
can be explained by a simple optical model. We have 
investigated this point further. 

In this paper the analysis is almost completely re
stricted to purely absorptive scattering; that is, we 
usually neglect the effects of nonabsorptive elastic 
scattering and spin-flip elastic scattering. Originally we 
intended to include these effects, but as will be described 
later the fitting problem becomes very complex when 
these effects are included, and we have found no solution 
to the problem. 

II. THEORY AND METHOD OF ANALYSIS 

A general discussion of theories of elastic scattering 
has been given by Perl, Jones, and Ting,7 and the reader 
is referred to that paper and its references for the back
ground. We begin here immediately with the partial 
wave analysis of ir+p scattering. For spinless particles 
when no inelastic processes occur, Schiff12 shows that 
the differential cross section in the barycentric system 
d<r(6)/dti is given by 

da(6)/dtt=\A(e)\2, (1) 

where 

A (6) = [ l / 2 « ] £ ( 2 / + l ) [ e x p ( 2 « , ) - l]P,(cos0). (2) 
1=0 

Here / is the orbital angular momentum quantum num
ber of the partial wave, k is the wave number in cm - 1 in 
the barycentric system, 6 is the scattering angle in the 
barycentric system, Pj(cos#) is normalized so that 
JP i ( l )= l , and 8i is the phase shift always taken to be 
—ir<8i<w. For the remainder of this paper all quanti
ties will be in the barycentric system and Pi(cosd) will 
always be normalized as above. 

If inelastic processes can occur, then Eq. (2) is 
modified by the addition of quantities ai where 0<ai< 1 
and 

A(d) = [l/2ik~]it (2l+l)Zaiexp(2i6i)-l:]Pl(cQsO). (3) 
1=0 

If there are no inelastic processes in the lih wave, then 
ai=l; if the Ith wave is completely absorbed by 
inelastic process, then az=0. Thus, ai is the degree of 
elasticity. 

Finally, if one of the particles has spin J and the other 
spin 0, as in the ir-\-p system, then for each / there are 
two possible total angular momentum states y = / ± 1; 
Eq. (3) becomes 

A (0) = [ l / 2 « ] E Kl+l)[ai+ e x p ( 2 « , + ) - 1 ] 
i=o 

+/ [a rexp(2 i5 r ) - l ] ]Pz (cos6>) . (4) 

12 L. Schiff, Quantum Mechanics (McGraw-Hill Book Company, 
Inc., New York, 1949), p. 103. 

But a second amplitude appears also, B{6), where 

B(6) = [1/2*6] £ [>,+ exp(2idi+)-ar exp(2^ z - ) ] 
i=i 

X sind£dP i (cos0)/d(cos0)] (5) 

and da(6)/dQ is now given by 

d<r(e)/m=\A(e)\*+\B(6)\K (6) 
This B (6) results from that part of the elastic process in 
which the orientation of the spin of the proton is 
changed. B (6) is referred to as the spin-flip amplitude in 
this paper. 

Equation (4) may be rewritten as 

A(d) = ll/2ik^{tL(l+i)(aihcos25l+-l) 
1=0 

+ / ( a r c o s M r - l ) ] P i ( c o s ^ ) + f f : [ ( / + l ) 
. 1=0 

X(az+sin25^)+/(az-sin25z-)]Pz(cos^)} 

= Ai(e)+Ar(e). (4a) 

If all di+ and 8r are zero then the real term Ar(6) is zero 
and A (6) is then referred to in this paper as purely 
absorptive. This name simply indicates that there is no 
phase shift of the partial waves, only absorption of 
them. When some 8i+ or 8r are not zero, then some 
nonabsorptive scattering is said to be present. When 
this phrase nonabsorptive is used, one should recall that 
it means not only that the real part Ar(6) is nonzero but 
also that the imaginary part A i(6) is modified. 

Just as A (6) can be separated into real and imaginary 
parts, so can B(6). Thus Eq. (6) is rewritten 

d*(d)/di^\Am\2+\Me)\2+\Bi{6)\*+\Br(e)\\ 

where 

Ai{6) = \_\/2ik~] E [ ( /+ l ) ( a z +cos25z + - l ) 

+l(ar cos2Sr-l)]Pz(cos<9), 

-4r(0) = [ l / 2 * ] f ; [(/+I)(az+sin25z+) 
1=0 

+l(ar sin28r)~]Pi(cosd), 
(6a) 

Bi{6)^[\/2ik~] f; [>z+ cos25z+-az- cos25z~] 
1=0 

Xsin0[dPl(cosd)/d(cosO)'], 

Br(6) = ll/2k] E [az+sin25z+-az-sin25z-] 
1=0 

Xsin^dPz(cos0)/J(cos0)]. 

Now the partial-wave analysis is useful only if a 
small number of /values contribute to the scattering. 
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This has been the basis of its very extensive use at low 
energies for ir+p and p+p scattering. For example in 
T+p scattering at 310 MeV, / values only up to /= 3 are 
used.13 In p+p scattering at 310 MeV, higher / values 
are used, but only those up to 1=3 are evaluated 
directly from the data; the rest are implicitly included 
in a one-pion exchange term.14 However, for elementary 
particle scattering above 1 GeV/c, partial wave ampli
tudes for I considerably larger than 3 must at least be 
considered. Furthermore, even for T+p scattering there 
are four numbers to be determined for each I value so 
that at least twenty and probably many more parame
ters would have to be determined. When one considers 
that the data are usually not of sufficient statistical 
accuracy to determine twenty or more parameters, that 
there are ambiguities, and that these are nonlinear 
equations, it is clearly not possible simply to go ahead 
and evaluate these parameters without any restrictive 
assumptions. 

In fact, it has been customary to make some very 
specific physical assumptions in order to solve this 
problem and the most often used assumptions lead to 
the optical model. In the simplest case of the optical 
model one assumes that 

5 ^ = 0 , ai+=ai 

and 

ai=a<l, 0<1<L\ 

at=l9 1>L J 

which leads to the result, 

where L » l , (7) 

A(fi) = l(l-a)/2ilT\j: (2/+l)P,(cos0) , 

L 

da(d)/dtt= [ ( l - a ) 2 / 4 & 2 ] [ E (2/+ 1)PI(COS0)]*. 
z=o 

(8) 

Physical significance is given to this model by 
thinking of a spherical interaction region of radius R, 
where R is the range of the interaction force. Then if the 
wavelength of the particle being scattered is small com
pared to R, one can think of the scattering as a semi-
classical process in which the distance of closest ap
proach of the scattered particle to the center of the 
scattering force is lft/p=l/k. Here p is the momentum 
of the particle and / is the orbital quantum number of a 
particular angular momentum state. Then for l/k<R or 
KRk, the incoming waves are partially absorbed and 
ai< 1. For l/k>R or l>Rk, there is no interaction and 
a i=*l. 

Our extension of the simple optical model is based on 
two observations. First, we observed, as have several 

FIG. 1. Two possible models for the dependence of 1—at on I. 
Curve A is the sharp cutoff rectangular model and curve B is the 
medium cutoff Gaussian model, both defined in Sec. V. 

authors,15,16 that it is not necessary to use conditions 
(7). Rather, a more general condition can be used: 

ai+=ar=ai, 

ai^O (or at least < 1) for small / , 

ai—> 1 as /—»oo . 

(9) 

The physical significance of this generalization is that 
the idea of an interaction region of range R and uniform 
strength has been replaced by an interaction region of 
nonuniform strength. We assume only that the inter
action is purely absorptive and that there is zero 
absorption at very large / values. Remembering that the 
interpretation is still semiclassical, we associate the ai 
at small / values with the strength of the interaction at 
small distances l/k, the ai at large / values with the 
strength of the interaction at large distances l/k. Thus, 
a sudden rise of a\ from nearly 0 to 1 at some h would be 
interpreted as a sharp drop in the interaction force at 
distance r=h/k. On the other hand, a slow rise of a\ 
from 0 to 1 would mean no sharp boundary to the 
interaction region. Finally, if ai for small / were larger 
than a i for some intermediate / values, this would be 
interpreted as a hollow core. 

A way of visualizing this is to use a graph in which 
1 — a i is plotted versus / as shown in Fig. 1. Usually the 
sharp cutoff of the simplest optical model (curve A in 
Fig. 1) is replaced by a gradual cutoff such as the 
decline of a Gaussian curve (curve B in Fig. 1). If one 
assumes that the variation of ai with I is smooth, then 
approximate analytic methods can be used to calculate 
da(6)/dQ. Two informative papers, one by Greider and 
Glassgold15 and the other by Frahn and Venter,16 use 
approximate analytic methods to discuss the generalized 
optical model, even with 5 ^ 0 and B(6)T*0 in some 
cases. 

13 O. T. Vik and H. R. Rugge, Phys. Rev. 129, 2311 (1963). 
14 R. Wilson, The Nucleon-Nucleon Interaction (Interscience 

Publishers, Inc., New York, 1963), p. 122. 

15 K. R. Greider and A. E. Glassgold, Ann. Phys. (N. Y.) 10, 
100 (1960). 

16 W. E. Frahn and R. H. Venter, Ann. Phys. (N. Y.) 24, 243 
(1963). 
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Our second observation is that these approximate 
analytic methods which are very useful for under
standing the behavior of da(6)/dil for various assump
tions as to a i behavior, are not appropriate or necessary 
for w+p elastic scattering in the 1 GeV/c to, say, the 10 
or 20 GeV/c range. They are not appropriate because in 
many cases the maximum I value at which ai is still 
significantly less than 1, is only 4 or 5, and thus the sum 
cannot be replaced by an integral. They are not neces
sary because it is possible to calculate the exact da(6)/dQ 
for any set of a i values. 

But more important, with a computer it is possible to 
do the reverse problem. Namely, given an experimental 
differential cross section, one can find the set of real a% 
values which gives the best fit to the equation for the 
differential cross section with purely absorptive scat
tering 

L 

da(d)/dQ=\ll/2ik']Z (2l+l)(al-l)Pl(cos6)\2. (10) 
z=o 

The purely absorptive scattering demands that 0 < ai< 1 
but with some loss of consistency one may require 
— I < # z < + 1. This is equivalent to allowing 5Z^0, so 
that (ai— 1)—> (aicos28i~ 1). The loss of consistency 
comes from not including the (ai sin2di) terms. 

If there were no constraints on the ai values then the 
fitting of the equation 

tda(d)/dttJi2 = £l/2klZ ( 2 / + l ) ( a r - l ) P i ( c o s 0 ) , (10a) 
1=0 

which is linear in the parameters ah can be treated by 
the standard weighted least-squares methods. The con
straints on a i make the problem much more difficult and 
we were fortunate in having available a program written 
by Moore,17 entitled CURVE, which fits parameters by 
the standard method of minimizing the weighted sum of 
the squared residuals. 

Given an initial estimate of the parameters ai, the 
program evaluates the function and obtains the residuals 
at each of the data points. I t is these residuals which are 
then fitted by using matrix inversion to solve the 
standard system of normal equations, formed by taking 
the derivatives with respect to each of the parameters. 
This procedure yields the correction increments to be 
applied to the original values of the parameters. In the 
linear case without constraints, only one iteration is 
sufficient. However, in the nonlinear case, the function 
having been first expanded by means of a Taylor series, 
repeated iterations are required, always fitting suc
cessive residuals to obtain smaller and smaller correction 
increments to be applied to the previous set of values of 
the parameters. 

In the case of constraints, the situation becomes 
slightly unpredictable, since a constraint equation is 
added to the system if, and only if, the parameter to be 

17 C. Moore (private communication). 

TABLE I. List of experimental differential cross sections below and 
at 3.15 GeV/c which are analyzed in Sec. III . 

Initial laboratory 
System 

ir~+p 
TT++P 
IT -\~p 
ir+-\-p 
T++P 
TT -\-p 
TT++P 
TT~+p 
ir+Jrp 
TT++p 
7T++p 
TT~~\-p 

momentum in GeV/c 

1.33 
1.33 
1.50 
1.50 
1.55 
1.59 
2.00 
2.01 
2.02 
2.50 
2.92 
3.15 

Reference 

a 

b 

e,d 

e 
b 

f 

e 

g 

g 

e 

h 

h 

a L . Bertanza, R. Carrara, A. Drago, P. Franzini, I. Mannelli, G. V. 
Silvestrini, and P. H. Stoker, Nuovo Cimento 19, 467 (1961). 

b J. Helland, University of California Radiation Laboratory Report 
UCRL-9507, 1962 (unpublished). 

0 M. Chretein, J. Leitner, N. P. Sanios, M. Schwartz, and J. Steinberger 
Phys. Rev. 108, 383 (1957). 

d K. W. Lai, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 7, 125 
(1961). 

•V. Cook, B. Cork, W. Holly, and M. L. Perl, Phys. Rev. 130, 762 
(1963). 

f J. Alitti, J. P. Barton, and A. Berthelot, Nuovo Cimento 29, 515 
(1963). 

e D. E. Damouth, L. W. Jones, and M. L. Perl, Phys. Rev. Letters 11, 287 
(1963). 

* M. L. Perl, L. W. Jones, and C. C. Ting, Phys. Rev. 132, 1252 (1963). 

constrained falls outside the designated range due to the 
fact that it was adjusted by too great an amount on the 
previous iteration. A test on all the constraint cases is 
made at the end of each iteration, and if a constraint is 
violated, the appropriate constraint equation is added 
to the system, and another iteration is required. 

III. EMPIRICAL PURELY ABSORPTIVE n^+p 
PARTIAL-WAVE AMPLITUDES 

BELOW 3 GeV/c 

In order to make a meaningful application of the 
least-squares method described at the end of the last 
section, it is necessary to have data on the differential 
cross section at all angles. Above 3 GeV/c existing 7r+^> 
differential cross-section measurements concern only the 
diffraction peak; there are no large-angle measurements. 
Therefore, the least-squares analysis is only applied to 
the data at 3 GeV/c and below, which is listed in 
Table I. 

In the fitting of data by an infinite series, the question 
of how many terms to use always arises. We have used 
the criterion that the series be extended until the ratio 
of x2/D approaches a minimum and then levels off or 
rises again. Here x2 has the standard meaning of the 
sum of the squares of the ratios of the residuals to the 
errors at each data point. D is the degrees of freedom 
which we have taken as the sum of the number of data 
points and number of constraints used minus the 
number of parameters. Table I I gives the values of the 
parameters (1 — ai) for each set of data for several 
maximum values of / around this minimum x*/D point. 
The parameters are also given for the kinds of con
straints, 0 < a * < l , which is designated by I, and 
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TABLE II. 1—ai values for various w+-\-p and iT-\-p systems. The plot column indicates the type of curve, if plotted. The constraint 
type is defined in Sec. III. Maximum I refers to the highest degree coefficient which was fitted. The number of degrees of freedom in 
each fit is indicated by D. The second x2 probability given takes into account the systematic errors in the experimental data, which 
would be approximately equal to the statistical errors, thus increasing the probability of the fit. 

System 

Inc iden t 
lab m o m e n t u m 
(GeV/c) 

P lo t 
Cons t ra in t t y p e 
M a x I 
D 
X2 

P(x2) 
P(x*/2) 1 —ao 
1 — a\ 
1 —a2 
1—a3 
1 — ai 
1 — at 
1 —a6 
1— an 
1 —as 
1—ag 
1—aio 
1 —an 

Sys tem 

Incident 
l ab m o m e n t u m 
(GeV/c) 

Plo t 
Cons t ra in t t ype 
M a x I 
D 
X 2 

P(x2) 
P ( x 2 / 2 ) 
1 —ao 
1 — a\ 
1 —a2 
1 — as 
X—ai 
1—as 
1 —ae 
1— ai 
1—as 
1 —as 
1 — aio 
1—an 

Sys tem 

Inc iden t 
lab m o m e n t u m 
(GeV/c) 

P lo t 
Cons t ra in t t ype 
M a x I 
D 
X 2 

P(x2) 
P ( x 2 / 2 ) 
1 —ao 
1 —ai 
1 —at 
1 — as 
1 —ai 
1—as 
1 — at 
1 — ai 
1 — as 
1 —a» 
1 —aio 
1 —an 

Sys tem 

Inc iden t 
l ab m o m e n t u m 
(GeV/c 

Plo t 
Cons t ra in t t y p e 
M a x I 
D 
X 2 

P(x2) 
P(x2/2) 
1 —ao 
1 - a i 
1 —a% 
1 — as 
1-ai 
1 —ae 
1 —ae 
1 - a r 
1 —as 
1 —at 
1 —aw 
1—an 

7T++P 

1.33 

none 
I I 

5 
14 

289.69 
<0.005 
<0.005 

2.000 ± 0 . 0 0 1 
0.123 ± 0 . 0 1 7 
0.303 ±0 .019 
0.207 ± 0 . 0 1 4 

*••*•+£ 
1.33 

solid curve 
I I 

6 
13 

193.06 
<0.005 
<0.005 

2.000 ±0 .000 
0.166 ±0 .018 
0.405 ±0.022 
0.235 ±0 .015 

TT++P 

1.33 

dashed curve 
II 

11 
15 

142.79 
<0.005 
<0.005 

2.0004 ±0 .001 
0.205 ± 0 . 0 1 0 
0.438 ±0 .011 
0.279 ± 0 . 0 1 1 

0.0237 ±0 .0088 0.502 ±0 .0092 0.065 ±0 .007 
0.00008 ±0 .0001 0.00009 ±0 .0001 0.0001 ±0.0001 

TT++fi 

2.00 

solid curve 
I I 

6 
11 
9.91 
0.55 
0.93 

2.000 ± 0 . 0 0 1 
0.715 ± 0 . 0 4 3 
0.343 ±0 .037 
0.317 ±0 .032 
0.129 ± 0 . 0 2 5 
0.068 ± 0 . 0 2 2 
0.040 ± 0 . 0 1 9 

TT++P 

2.92 

solid curve 
I I 

7 
17 
38.87 

<0.005 
0.31 

1.03 ± 0 . 0 7 
0.652 ± 0 . 0 4 3 
0.354 ± 0 . 0 3 3 
0.36 ± 0 . 0 4 
0.155 ± 0 . 0 2 4 
0.115 ± 0 . 0 2 3 
0.042 ± 0 . 0 2 4 
0.051 ± 0 . 0 1 9 

7T_+i> 

1.50 

none 
I 

5 
19 

416.09 
<0.005 
<0.005 

1.0007 ± 0 . 0 0 1 
0.345 ± 0 . 0 2 6 
0.084 ±0 .014 
0.191 ± 0 . 0 1 6 

0.0776 ±0 .0079 0.077 ± 0 : 0 0 8 

TT++P 

2.02 

none 
I 

6 
18 

439.05 
<0.005 
<0.005 

1.0005 ± 0 . 0 0 1 
0.922 ± 0 . 0 3 0 
0.197 ± 0 . 0 2 2 
0.336 ± 0 . 0 2 3 
0.048 ±0 .017 
0.072 ±0 .017 
0.0001 ±0 .0001 

TT++P 

2.92 

none 
I I 

8 
16 
26.04 
0.06 
0.65 

1.14 ± 0 . 0 6 
0.456 ±0 .037 
0.547 ± 0 . 0 3 8 
0.28 ± 0 . 0 2 
0.290 ± 0 . 0 2 9 
0.019 ± 0 . 0 2 4 
0.107 ±0 .017 
0.0001 ±0 .0001 
0.072 ±0 .016 

7T~-H> 

1.50 

solid curve 
II 
4 

17 
21.34 

0.22 
0.72 

1.628 ± 0 . 0 4 0 
0.446 ±0 .026 
0.303 ± 0 . 0 2 9 
0.265 ± 0 . 0 1 7 

0.00009 ±0 .0001 0.029 ± 0 . 0 1 6 
0.0001 ±0 .0001 

0.019 ± 0 . 0 0 8 
0.0001 ±0.0001 
0.03 ±0 .005 
0.005 ±0 .005 
0.003 ±0 .005 

1T++P 

2.02 

TT++p 

1.50 

none 
I 

7 
9 

517.61 
<0 .005 
<0.005 

ir++p 

1.50 

solid curve 
I I 

4 
12 
26.01 

0.02 
0.40 

1.0005 ± 0 . 0 0 1 2 .000±0 .001 
0.027 ± 0 . 0 3 0 0.253 ±0 .032 
0.0001 ±0 .0001 0.205 ± 0 . 0 2 8 
0.146 ±0 .022 0.260 ±0 .022 
0.0001 ±0 .0001 0.056 ±0 .018 
0.0001 ±0 .0001 
0.0001 ±0.0001 
0.045 ±0 .012 

7T+-B> 

2.02 

solid curve dashed curve 
I I 

6 
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FIG. 3. Data and fitted curves for T~-\-p systems. d<r/d£l is 
normalized by dividing the experimental differential cross section 
by (&<rtot/47r)2. The vertical bars indicate the statistical experi
mental errors. The meaning of the solid and dashed curves is given 
in Table II and in the text. 

0.100 
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da 
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0.010 

0.0001 

3.15 GeV/C 

— l < # z < 1, which is designated by II . Constraint II , by-
allowing the additional range — l<ai<0, implies that 
?r> \8i\ >§7r is being allowed, or that at least 28i=w is 
being allowed. Thus constraint I I allows at least a 90° 
phase shift in addition to the 0° phase shift of con
straint I. 

We first observe that the I I constraint always gives 
better fits, and sometimes substantially better fits, than 
the I constraint. However, we also observe that it is only 
a0 which requires the I I constraint. That is, it is only the 
S wave which is not purely absorptive. There is no par
ticular reason known for the 5 wave to be exempt from 
the I constraint, but it is probable that the improvement 
in the fit when 1 — #0> 1 is due to the S wave taking up 
some of the neglected nonabsorptive and spin-flip 
scattering. 

We have taken the I I constraint parameters as being 
most meaningful and Figs. 2 and 3 show the kinds of 
fits which are achieved. To simplify the comparisons, 
experimental cross sections at each momentum are 
divided by the quantity {k<Ttot/kn)2. This is the 0° 
differential cross section given by the optical theorem if 
the scattering amplitude has no real part. Since the real 
part is small, this normalized da/dQ goes roughly to 1.0 

at 0°. The fitted curves follow the data quite well and 
in no case is there a deviation between the two which 
could not be taken account of by a small amount of non-
absorptive or spin-flip scattering. These neglected scat
tering terms could also account for the low x2 proba
bilities which are listed in Table II . However, these x2 

probabilities should not be taken too seriously because 
the errors used were purely statistical. No account was 
taken of systematic errors in the instrument or the 
analysis. In many of the experiments it is reasonable to 
take the systematic errors as very roughly equal to the 
statistical errors, which immediately increases the 
probabilities drastically. These x2 probabilities are also 
listed in Table II . 

A few comments on Figs. 2 and 3 will now be made. 
All the plots were made semilogarithmic so that the 
behavior of the cross section at the larger angles would 
be easier to see. However, one must realize that for 
many of the energies the large-angle cross sections are 
relatively much smaller than the small-angle cross 
sections. This leads at the larger angles to relatively 
larger statistical error bars, and to relatively larger 
systematic errors such as contamination by inelastic 
events. Therefore, the deviations of the fitted curves 
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FIG. 4. Values of 1 —ai for -n-++p systems. The vertical bars 
indicate the statistical errors in the coefficients. These coefficients 
apply only to the solid curves of Fig. 2. 

(g) 

from the data at these larger angles may seem to be 
more important than they really are. Conversely, the 
diffraction peak has a very strong effect on the ai values 
because of the relatively high statistics of the points on 
the peak. 

For 7r~+p sit 1.33 GeV/c, the fit at large angles is 
poor; since this momentum is relatively low, the purely 

absorptive assumption may be quite poor here. How
ever, some of the fluctuations in the data occur over such 
a small region of cos#, that there is some possibility that 
there are errors in the data, or that higher / values are 
needed. For T++p at 1.33 GeV/c the purely absorptive 
assumption is definitely wrong. The reason for the fitted 
curve lying almost always below the data is that 1 — #o 
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< 2 was required. A further increase in 1 —a0 immedi
ately improves the fit. This 1.33 ir++p data of Helland9 

has been fit by him with an equation of the form 

£ Ci(cos0)* 

with no constraints on the C\-. He obtains a good fit but 
this series cannot be resolved uniquely into our ai and 
81 values, so we cannot interpret it. To see if small 
amounts of higher / states would improve these low 
momenta fits we have tried higher order fits which are 
the dashed curves in Figs. 2(a) and 3(a). The ir~+p 
curve for these higher orders fits the data well, but the 
ir+Jrp fit remains poor. This may be related to the 
resonance in the ir++p total cross sections at this 
momentum. 

Whether the fitted dcr/dQ, turns up or down as 6 ap
proaches 180° depends on the data near that point. In 

general, we find either large uncertainties or possibly 
unrealistic fluctuation in dv/dti near 180°. Thus the 
da/dtt in 1.50-GeV/c ir++p at 180° very probably turns 
up the way it does at 1.55-GeV/c T++p; however, the 
statistics of the last point at 1.50 GeV/c are not suffi
ciently high to force the turn up, unless Zmax is increased. 
The backward peak in the 2.92-GeV/c ir++p and 3.15-
GeV/c w~+p data comes from the fit at smaller angles 
and there is no proof of its existence. 

Finally, in the 2.02-GeV/c ir++p we have also tried 
higher /max fits (the dotted and dashed curves) although 
the statistics do not warrant doing this. The dotted 
curve which has / m a x = 10 turns up at 180° while the 
dashed curve which has lma^=9 turns down, although 
both of these curves follow the data quite well Once 
again this indicates the uncertainties at 180° in da/dtt. 

Of course, there is no proof that the parameters of 
Table I I are unique. I t is certainly possible by using 
large amounts of nonabsorptive and spin-flip scattering 
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FIG. 6. Values of 1—ai for iv~+p systems at 4.13 and 4.95 GeV/c. 

to get drastically different answers. However, on the 
assumption that the scattering is mainly absorptive, the 
parameters of Table I I provide a set of partial-wave 
amplitudes which describe quite well all the varied 
shapes of the existing data. To visualize how these 
partial-wave amplitudes vary with /, 1 — a\ is plotted 
versus / for ir+-\-p in Fig. 4 and w~+p in Fig. 5. 

IV. EMPIRICAL PARTIAL-WAVE AMPLITUDES 
ABOVE 3 GeV/c 

To fit the data above 3.15 GeV/c we have extended a 
method of Minami18 in which the data are first expressed 
in the form 

d*/dQ=ZA(6)J, 
A (0) — exp(ao+#i cos#)+£+exp(— bo— b\ cos#). 

This is a form suggested by the simple Regge theory in 
which the first term is the exponential diffraction peak, 
the last term is a possible peak for 180° scattering and c 

TABLE III. 1—ai values for ir~-{-p at 4.13 GoV/c, 
given by Minami (Ref. 16). 

/ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 — ai 
No backward peak 

1.00 
0.73 
0.61 
0.50 
0.48 
0.27 
0.18 
0.11 
0.06 
0.03 
0.02 
0.01 
0.004 

1 — ai 
Backward peak 

0.76 
0.95 
0.44 
0.62 
0.31 
0.30 
0.16 
0.12 
0.06 
0.04 
0.02 
0.01 
0.004 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1—ai 

0.89 
0.82 
0.69 
0.57 
0.46 
0.35 
0.24 
0.18 
0.13 
0.09 
0.07 
0.05 

is a constant background term. Minami uses this form 
to show the effect of the possible, but so far undetected, 
backward peak on the partial-wave amplitudes. For this 
simple form the partial-wave amplitudes can be found 
analytically. For ir~+p at 4.13 GeV/c, Minami gives ax 

for the case in which there is no backward peak and for 
the case in which the backward peak is 1/24 of the 
diffraction peak in height. His values in the form 1 — a i 
are given in Table I I I . The major difference between the 
1 — ai values in the two cases is that if there is no back
ward peak, 1 — a i decreases monotonically, whereas if 
there is a backward peak, 1 — ai oscillates for small /. 
This is a phenomenon which we frequently observed in 
the course of these fits at momenta above 2 GeV/c. The 
diffraction peak can be fit by a monotonically decreasing 
series of 1 — a\ values or by a series in which either the 
even I or odd / values of 1 — ai dirt larger. However, the 
second situation always leads to a backward peak. This 
can be understood by realizing that for 6 close to 0, all 
Pi(cosd) are positive and the partial waves add. For 6 
close to 180°, the Pz(cos0) are positive for even / and 
negative for odd /. If the amplitudes are monotonically 
decreasing, then there will be almost complete cancella
tion at 180°. But, if the even I or odd / amplitudes are 
unusually larger, there will be a residual backward peak. 

For 4.95-GeV/c 7r~+p, we have used the exponential 
fit of Perl et al? 

^ / JO-exp(3 .64+8 .9 /+2 .0^+0 .1 / 3 ) , 

where / is the square of the four-momentum transfer in 
[_GeV/c]2- The expansion in partial waves, 

[exp(3.64+8.9/+2.0/2+0.1/3)] 1/2 

18 S. Minami, Phys. Rev. 133,|B 15812(1964). 

= D / 2 * ] E ( l - a O ( 2 / + l ) P i ( c o s 0 ) , 
1=0 

was carried out by numerical integration. The 1 — ai 
values are listed in Table IV. 

Figure 6 shows the 1 — ai versus / plots for the no 
backward peak case for 4.13 and 4.95 GeV/c. The 1 — ai 
versus / behavior is a clear continuation of the behavior 
at lower energies. 
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FIG. 7. Data and fitted curves for the sharp cutoff rectangular model (A), the best of the Gaussian models (B), 
and the fit of Sec. I l l , for if~-\-p systems at 2.01 and 3.15 GtV/c. 

For the very high momenta such as measured by 
Caldwell et al.,5 or by Foley et al.f there is no point in 
writing down all the partial-wave amplitudes at this 
time since the large-angle differential cross section is 
completely unknown. At higher energies the Tr±Jrp 
differential cross section has almost an exponential 
shape in t. Therefore, the 1 — a% versus / behavior as 
exhibited at lower energies will continue; namely, there 
will be a 1 — ai versus I behavior such as in Fig. 6, with 
1 — #o< l and a slow decrease in 1 — ai as I increases. I t 
is interesting to observe that below 3.15 GeV/c the best 
fit requires 1 — a 0 > 1, but that above 3.15 GeV/c all 
1 — ai are less than 1, so that above 3.15 GeV/c the fit 
can be purely absorptive. 

V. COMPARISON WITH OTHER MODELS 

The fits to the data found in Sec. I l l are much 
superior to the fits obtained using the standard optical 
models. To illustrate this, we have made the best fits 
to the data using the following models for ai\ 

l>h 

Sharp cutoff rectangular model: 

1 — ai=l — a, 0 < / < / m a x , 

1 — ai—0, />/m a x . 

Sharp cutoff Gaussian model: 

l - a z =3/ [ / m a x (27r ) 1 / 2 ] , 0 < K / m a x , 

l - « , = [3//max(27r)1/2] exp[-9( / - / m a x ) 2 /2 /max 2 ] , 

Median cutoff Gaussian model: 

l -az=f/m a x(27r)1 / 2 , 0 < / < / m a x , 

l - f l i = [f/max(27r)1/2] e x p [ - 9 ( / - / m a x ) 2 / 8 / m a x
2 ] , 

l>l max • 

Pure Gaussian model: 

l - a i = [1 /W21T) 1 ' 2 ] exp(-Z2 /2/m a x
2) , all / . 

The sharp cutoff rectangular model is self-explana
tory : the coefficients are constant up to some maximum 
value of /, after which the 1 — ai are zero. In the sharp 
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p = (UV2 ) /k in units of I0" l3cm 

FIG. 8. Plot of 1— a(p) versus p where p= 0+i) /&. p is in units 
of 10~13 cm and k is the wave number in the barycentric system. 
Plus signs are for all the ir+-\-p data analyzed in this paper except 
the 1.33 GeV/c ir+-\-pi and filled circles are for all the ir~Jrp data. 
S designates the curve for 19.6-GeV/c P~\~P elastic scattering 
derived from the analysis of Serber in Ref. 20. K designates the 
curve given by Krisch in Ref. 19 for p+p elastic scattering 
above 10 GeV/c. 

and medium Gaussian cutoff models, we have held the 
parameters constant up to some maximum /, and then 
let them decrease by following a Gaussian curve in 
which the mean is /max, and the variance is /max/3 and 
2/max/ 3,respectively. The pure Gaussian model repre
sents an immediate Gaussian decrease in the values of 
the 1 — ai, with no constant sequence at the beginning; 
that is, the mean is equal to /max, which is equal to zero. 

Figure 7 shows the fit for the sharp cutoff rectangular 
model (A), the fit for the best of the Gaussian models 
(B), and the fit of Sec. I l l (C), for 2.01 ir~+p and 
3.15 -rr-\-p. In considering the goodness of fit of the 
models, one can neglect the points at which the calcu
lated curves go to 0. These points look very bad because 
semilogarithmic plots are being used, but a small 
amount of nonabsorptive or spin-flip scattering can 
adjust these points. However, the important observa
tions are first, that the Gaussian models are no im
provement over the rectangular model in spite of the 
usually held idea that a Gaussian model is more realistic. 
Secondly, both models deviate from the data both at 
large angles and in the diffraction peak. Finally, they 
clearly need major modification (such as adding a con
stant term) to improve the fit, so that one might as well 
go directly to the fits of Sec. I I I . 

VI. DISCUSSION OF THE PURELY ABSORPTIVE 
WAVE AMPLITUDES 

The conclusion from the last three sections is that we 
have found a set of ai values which change in a smooth 
way with energy and which fit the data quite well. 
Except for the S wave all the 1 — ai are less than one. 
The maximum / used is roughly 1.5 to 2 times kR if R 

is taken as 10~13 cm. All of this is in accord with some 
optical models which have been previously used. How
ever, there is a very important difference between all 
previous models and these sets of parameters. In previ
ous models the values of 1 — ai are taken as 1 up to some 
/', and then 1 — a\ drops to 0 quickly or slowly depending 
on how sharp a cutoff is assumed. 

However, looking at Figs. 4 and 5, it can be observed 
that, for all our sets of parameters, 1 — ai decreases 
continuously to 0 with no indication of a break or 
change in the shape of 1 — ai versus /. There is no evi
dence of a surface region. The shape of the 1 — at versus / 
curve lies between linear and concave upward, and no 
inelastic channel is completely absorbed except for the 
S channel. In terms of the pion-nucleon interaction this 
means that the rough picture is one in which the forces 
decrease smoothly with distance, and which indicates no 
surface region in which the forces change rapidly. 

Of course, this is the picture given by field theory 
also, and the diffuseness of the pion-nucleon interaction 
is, therefore, no surprise. Perhaps the main point of this 
analysis is not the behavior of the large / value ampli
tudes, which have always been assumed to be decreasing 
smoothly to 0. The point is that even the low I states, 
such as p and d, are incompletely absorbed. 

I t is interesting to compare these results with two 
recent analyses of very high-energy p+p elastic scat
tering carried out by Krisch19 and Serber.20 Krisch fits 
some of the p-\-p differential cross-section data above 
10 GeV with a single energy-independent function con
sisting of the sum of two exponentials. By means of Eq. 
(10a) he numerically evaluates quantities exactly equiv
alent in meaning to our 1 — ai parameters. His graph of 
1 — ai versus / shows the same behavior as our ir-\-p 
graphs of 1 — ai. 1 —a0 is close to 1.0, 1 — at decreases 
smoothly and monotonically with increasing /, and the 
maximum / value used is about 2kR. 

Serber20 approximates Eq. (10a) with an integral by 
means of the semiclassical relationship kp=l+%. His 
equivalent of our [_^~di}, which he writes as 
[1 — exp(—2Xi)~] is then replaced by the continuous 
function [1 — exp(— 2x(p))2- He fits the p-\-p differ
ential cross sections with a purely absorptive potential 
which behaves like a Yukawa potential for small dis
tances and as a Gaussian potential for large distances. 
Serber gives the x (p) corresponding to this potential for 
19.6-GeV/c p+p scattering. 

By means of the relation / e p = / + | we can compare 
our results with those of Krisch and Serber. Figure 8 
contains the 1 — ai parameters [designated on the graph 
as l — a(p)2 for the best fits to the ir+p data analyzed 
in this paper. The 1.33-GeV/c T++p was the only one 
not used, and this is because our fit to that data is so 
poor. The 1 — a(p) is plotted for each p given by 
p= ( /+ ! ) /£ where k is the wave number in the bary-

19 A. D. Krisch, Phys. Rev. Letters 11, 217 (1963). 
20 R. Serber, Rev. Mod. Phys. 36, 649 (1964). 
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centric system. The points designated by a plus sign are 
for w++p and by a filled circle are for w~+p. This figure 
shows that our parameters are very roughly energy-
independent, although there is certainly too much 
variation between them to attempt to use a single set of 
parameters or a single energy-independent potential to 
represent these data. In particular, the 1 — a0 parameter 
varies from 2.0 to 0.9. 

The x(p) versus p function of Serber20 has been 
changed into a [1 —exp(—2%(p))3 function and is given 
in Fig. 8 (designated by S). Finally by making use of the 
1 Fermi mark which Krisch19 gives in his plot of 1 — ai 
versus /, we are able to give his equivalent curve of 
1 — a(p) versus p (designated by K) in Fig. 8. From 
Fig. 8 it can be seen that the description of very high-
energy p+p elastic scattering given by Serber and by 
Krisch is quite similar to our description of high-energy 
T+p scattering. Of course there are special features in 
both differential cross sections. The high-energy T+p 
has peaks at nonzero angles, while the p+p seems to be 
smooth at all energies above 1 GeV. The very high-
energy p+p large-angle scattering leads to the second 
exponential in the Krisch analysis which he interprets 
as a core term. (No measurements of large angle, very 
high energy, T+p differential cross sections exist, so it 
is not known whether the T+p at very high energies 
can also be given this core interpretation.) But the 
interesting thing is that these special features have only 
a small effect on the purely absorptive partial-wave 
amplitudes, and that from T+p at momenta close to 
1 GeV/c to p+p at momenta above 20 GeV/c the same 
model can be used for these amplitudes. 

One would like to be able to connect this analysis 
with the low-energy phase-shift analysis of p+p and 
T+p elastic scattering.13,14 Unfortunately, the gap is too 
large and there is no way to make the jump from the 
low-energy analysis where the phase shifts are all 
almost completely real to our case where they are all 
almost purely imaginary. I t is not even possible to say 
if the number of / values used changes in a consistent 
way from low to high energies. This is because at low 
energies, for example at 310 MeV, the highest phase 
shifts are of the order of a few degrees in size, and such 
small, purely real, phase shifts have no significance in 
the purely absorptive high-energy analysis. 

We now turn to the relation between these ai fits and 
the higher pion-nucleon resonances. As discussed in the 
Introduction, Simmons11 has shown that the sharp 
cutoff rectangular model can explain the second peak at 
2.0 GeV/c in the T±+p differential cross section. 
Reference to Table I I shows that the fitted values of 
1 — ai, which reproduce the data quite well, exhibit no 
particularly large 1 — ai value; that is, no / state seems 
to predominate. Therefore, we agree with Simmons that 
the 7r±+p differential cross sections give no evidence as 
to the angular momentum states which cause the 2.1-
GeV/c maximum in the ir~+p total cross section. 

Furthermore, the several fits to the ir++p data in the 
1.5-GeV/c region show no dominant high angular mo
mentum state. Therefore, the large backward bump in 
the differential cross sections at these momenta may not 
be related at all to the w++p total cross-section maxima 
at 1.4 GeV/c. As has been stated before, these fits may 
not be unique and there may be a set of amplitudes, 
particularly when nonabsorptive and spin-flip scattering 
appear, which do show that a higher / state is particu
larly large. 

In connection with this, it is important to know that 
the sizes of the coefficients cn in an expansion of the form 

da(d)/dtt= £ *«[cos0]" (ID 

are not directly indicative of the importance of a par
ticular / state. For example, if one considers a sharp 
cutoff rectangular model of the form 

l - a « = l , 0<l<3, 

l - a i = 0 , l>3, 

then the relative sizes of the coefficients when da/dtt is 
expressed in the form of Eq. (11) are 

c0= 1, c4=—91.2, 

cx= 9 .1 , c6= 115.7, 

c2= 15.4, cQ= 136.1. 

c*= ~52 .4 . 

Thus, one might be tempted to ascribe particular im
portance to 1=2 or 1=3 states since the c±> c&, and c$ 
coefficients are so large, whereas all states actually enter 
with exactly equal absorption. 

As another example, consider a model with 

l - a o = l , 1 - 0 4 = 1 / 9 , 

1 - 0 1 = 1 / 3 , 1 - 0 5 = 1 / 1 1 , 

1 - 0 2 = 1 / 5 , 1 - 0 6 = 1 / 1 3 , 

1 - 0 3 = 1 / 7 , l - 0 z = O , Z>6. 

The relative cn coefficients are: 

co= + 1.0, c 7 = + 4 1 . 5 , 

d = + 0 . 8 , c 8 = + 4 3 . 9 , 

^2= ~ 2 . 8 , 

c 3 = - 4 . 6 , 

c 4 = - 8 . 4 , 

ch= - 0 . 0 , 

^ 6 = - 5 . 0 . 

^ 9 = - 7 1 . 4 , 

cio=—64.0, 

d i = + 3 8 . 5 , 

^12=+35.0. 

Here again, the higher I states seem to predominate, 
whereas there is actually a smooth dropoff in the 
absorption as I increases. 
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FIG. 9. Data and plot of curve for 2.01-GeV/c ir~-\-p system, 
fitted with inclusion of terms for nonabsorptive and spin-flip 
scattering. 

VII. INCLUSION OF NONABSORPTIVE AND 
SPIN-FLIP SCATTERING 

Our original hope of being able to make complete fits 
using the full Eq. (6a) was not fulfilled for two reasons. 
First, the computer problem proved to be very difficult 
since Eq. (6a) is nonlinear and there are constraints on 
ai^ and 8^. Unless the program was given initial values 
for the parameters quite close to the best-fit parameters, 
the computation converged either very slowly or not at 
all. Frequently, as the iteration proceeded, some con
straints went in and out of the calculation repeatedly so 

TABLE V. 1—ai values and hi values for iT-\-p at 2.01 GeV/c. 

1 

0 
1 
2 
3 
4 
5 

1 — ai 

0.99 
0.689 
0.383 
0.172 
0.226 
0.117 

i 

0 
1 
2 
3 
4 
5 

hi 

0.50566 
-0.29936 
-3.12056 
-0.5424 
5.8152 
4.11546 

TABLE VI. Fitted values of Eq. (12) given by solution in Table V 
for iT-\-p data at 2.01 GeV/c. Both terms have been normalized 
to show relative size of hi term. 

COS0 

0.935 
0.850 
0.750 
0.620 
0.540 
0.460 
0.380 
0.300 
0.220 
0.140 
0.060 

-0.020 
-0.100 
-0.240 
-0.400 
-0.560 
-0.720 
-0.880 

da/dQ 

0.36740 
0.12990 
0.03650 
0.00822 
0.00499 
0.00538 
0.00754 
0.01014 
0.01194 
0.01220 
0.01085 
0.00847 
0.00595 
0.01268 
0.00335 
0.00257 
0.00064 
0.00139 

5 

2J 6»(cos0)» 
*=0 

0.03565 
0.02025 
0.00894 
0.00183 
0.00026 
0.00000 
0.00052 
0.00014 
0.00240 
0.00324 
0.00383 
0.00410 
0.00406 
0.00339 
0.00215 
0.00109 
0.00058 
0.00030 

that the iteration became cyclic. Therefore, in many 
cases when we attempted a complete fit we found no 
solution, and in no case could we be sure that we had 
found the solution with the lowest %2-

The second reason is that much more extensive data 
are required. Not only is there the obvious need for 
polarization data to give the spin-flip scattering, but for 
the differential cross section both good statistics and 
close data spacing are required. For example, we find at 
2.01-GeV/c Tf~-\-p that the exact shape of the diffraction 
peak strongly controls the values of a\. This is the reason 
that the fit to the second peak is not exact. Also, even 
though there are 7000 events in this measurement, the 
statistics at large angles are insufficient. On the other 
hand, in the 1.55-GeV/c ir+-\-p data there are good 
statistics at large angles, but the diffraction peak was 
not measured at small enough angles, so its slope is 
relatively unsure, and the values of ai may be somewhat 
inaccurate. 

However, as a first look at more complete fitting, we 
have taken the 2.01-GeV/c T~+p data of Damouth 
et al.10 These data, which have only been published 
previously in graphical form, are given in the Appendix 
along with the 2.02-GeV/c ir++p data of Damouth 
et al.10 The differential cross section is written in the 
form 

Zmax 

da(d)/dtt=\_\/W]{[_Y< (2l+l)(l-al)Pl(cos6)J 

imax 

+ E biicosd)*}. , 

The bi series is designed to allow for spin-flip scattering 
and the sin25j part of the nonabsorptive scattering. The 
ai were constrained so that 0< 1 — ai<2, and the bi were 
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constrained so that 
»max 

£ bi(cosOy>0, for all 6. (13) 

Figure 9 indicates the improved fit to the data, given by 
the solution in Table V. Table VI lists da(d)/dtt and the 
contribution of the bi series for a selection of cos0 
values. In the very small angle region the bi contribution 
is always less than 10%, which agrees with the require
ment that the real part of the scattering amplitude and 
the spin-flip scattering amplitude be small in this 
region. For some of the large angles, however, the bi 
contribution is the major part, but here there are as yet 
no theoretical ideas with which to compare these 
predictions. 
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APPENDIX 

Pion-proton differential cross section in barycentric 
system. The errors are statistical and do not include an 
over-all normalization error of ± 8 % for it~-\-p and 
+ 10%, -20%for7r++£. 

~+p scattering at 2.01 GeV/c 
COS0 

0.935 
0.925 
0.915 
0.905 
0.890 
0.870 
0.850 
0.83 
0.81 
0.79 
0.77 
0.75 
0.73 
0.71 
0.69 
0.66 
0.62 
0.58 
0.54 
0.50 
0.46 
0.42 
0.38 

0.93 
0.91 
0.89 
0.86 
0.82 
0.775 
0.725 
0.650 
0.55 
0.45 
0.35 
0.25 

d<r/dto (mb/sr) 
6.04±0.28 
5.28±0.27 
4.74±0.25 
3.92±0.24 
3.16±0.15 
2.54±0.14 
2.13±0.13 
1.86±0.12 
1.45=L0.11 
1.02±0.09 
0.79±0.08 
0.63=fc0.07 
0.54±0.07 
0.35=L0.06 
0.25=fc0.05 
0.20=fc0.03 
0.14±0.03 
0.06=fc0.02 
0.10±0.02 
0.05±0.02 
0.08±0.02 
0.11 ±0.03 
0.17±0.03 

ir+-{-p scattering 

6.54±0.74 
4.89±0.64 
3.42±0.38 
3.35±0.27 
2.35db0.23 
1.56±0.17 
1.06±0.14 
0.43=b0.07 
0.29±0.05 
0.18±0.04 
0.25±0.05 
0.26±0.05 

cos^ 
0.34 
0.30 
0.26 
0.22 
0.18 
0.14 
0.10 
0.06 
0.02 

-0.02 
-0 .06 
-0 .10 
-0 .16 
-0 .24 
-0 .32 
-0 .40 
-0 .48 
-0 .56 
-0 .64 
-0 .72 
-0 .80 
-0 .88 
-0 .94 

at 2.01 GeV/c 

0.15 
0.05 

-0 .05 
-0 .15 
-0 .25 
-0 .35 
-0 .45 
-0 .55 
-0 .65 
-0 .75 
-0 .85 
-0 .93 

da/dQ, (mb/sr) 
0.15db0.03 
0.18±0.03 
0.23±0.03 
0.25±0.04 
0.18±0.03 
0.23±0.03 
0.14±0.03 
0.16db0.03 
0.11 ±0.02 
0.16±0.03 
0.14±0.03 
0.09±0.02 
0.08±0.01 
0.06±0.01 
0.06±0.01 
0.05±0.01 
0.06±0.01 
0.04±0.01 
0.02±0.01 
0.01±0.01 
0.01±0.01 
0.02±0.01 
0.03±0.02 

0.32±0.05 
0.09±0.03 
0.13±0.04 
0.14±0.04 
0.12±0.04 
0.18±0.04 
0.07±0.03 
0.12±0.04 
0.09±0.04 
0.03±0.03 
0.04±0.03 
0.06db0.05 


